Kyulux, Inc. Announces License of Harvard Deep Learning Artificial Intelligence Platform for OLED Development

Kyulux, Inc. has secured a license to Harvard University’s Molecular Space Shuttle deep learning system for the discovery of materials for display and lighting applications. The Molecular Space Shuttle is an artificial intelligence platform designed by Alán Aspuru-Guzik’s group at Harvard’s Department of Chemistry and Chemical Biology.

In a publication last week in Nature Materials, co-authored by researchers at Harvard, Samsung Advanced Institute of Technology and MIT, Aspuru-Guzik and his group demonstrated the ability of the system to rapidly screen millions of molecules for stability and other characteristics necessary for a molecule to produce light with the characteristics necessary for use in commercial production of cell phone and television displays.

“By developing a sophisticated molecular builder, using state-of-the-art quantum chemistry and machine learning, in addition to drawing on the expertise of experimentalists, we discovered a large set of high-performing blue OLED materials,” said Aspuru-Guzik, Professor of Chemistry and Chemical Biology, who led the research. “Following that validation, I am extremely excited to see this platform adopted for commercial development, utilizing its capabilities for the rapid screening of TADF materials.”

The license agreement coordinated by Harvard’s Office of Technology Development provides Kyulux with rights to the copyrighted software. The algorithms dramatically reduce the computational cost of testing candidate molecules for new technologies.

In addition to Kyulux’s licensing of the software, three key researchers who developed the system in Aspuru-Guzik’s research group and were co-authors on the Nature Materials publication have chosen to join Kyulux’s computational chemistry group in Boston. Professor Aspuru-Guzik will also join the company as a part-time scientific advisor. Aspuru-Guzik will be among three other TADF academic research leaders, Chihaya Adachi and Hajime Nakanotani from Kyushu University and  Hironori Kaji  from the University of Kyoto, joining a world-class team of scientific advisors to Kyulux.

“We were able to model these molecules in a way that was really predictive,” said Rafael Gómez-Bombarelli, a postdoctoral fellow in the Aspuru-Guzik lab and first author of the paper.  ”We could predict the color and the brightness of the molecules from a simple quantum chemical calculation and about 12 hours of computing per molecule.”

“TADF molecules require very complicated material design rules to achieve highly efficient emission and long lifetimes for commercialization. The Molecular Space Shuttle enables us to access a wide variety of molecules which we have not designed yet within a short period. This is a key technology for enhancing the competitiveness of Kyulux,” said Junji Adachi, CTO of Kyulux.

“Kyulux is excited to be able to incorporate the capabilities of these researchers. Kyulux has assembled one of the finest teams of organic chemists and device physicists in the OLED field in the world.  Adding the incoming team and the Molecular Space Shuttle will allow us to rapidly accelerate our discovery and commercialization of the next generation of OLED materials,” said Dr. Christopher Savoie, CEO of Kyulux.

“I am sure that an unlimited possibility for molecular design will change the world of organic electronics and photonics. We are very much excited to have a collaborative and productive relationship with Alan’s group. The combined capabilities of the computational chemistry from Harvard and the vast experience in OLEDs at OPERA, Kyushu Univ. and Kyulux will pioneer a new direction in the study of organic electronics,” said Kyulux co-founder, Professor Chihaya Adachi of Kyushu University.

Comments are closed.